The cholinergic neuronal system, through its projections to the hippocampus, plays an important role in learning and memory. The aim of the study was to identify genes and networks in rat hippocampus with and without memory deficit. Genome-scale screening was used to analyze gene expression changes in rats submitted or not to intraparenchymal injection of 192 IgG-saporin and trained in spatial/object novelty tasks. Results showed learning processes were associated with significant expression of genes that could be grouped into several clusters of similar expression profiles and that are involved in biological functions, namely lipid metabolism, signal transduction, protein metabolism and modification, and transcription regulation. Memory loss following hippocampal cholinergic deafferentation was associated with significant expression of genes that did not show similar cluster organization. Only one cluster of genes could be identified; it included genes that would be involved in tissue remodeling. More important, most of the genes significantly altered in lesioned rats were down-regulated. (c) 2010 Elsevier Inc. All rights reserved.