The processing of syllables in visual word recognition was investigated using a novel paradigm based on steady-state visual evoked potentials (SSVEPs). French words were presented to proficient readers in a delayed naming task. Words were split into two segments, the first of which was flickered at 18.75 Hz and the second at 25 Hz. The first segment either matched (congruent condition) or did not match (incongruent condition) the first syllable. The SSVEP responses in the congruent condition showed increased power compared to the responses in the incongruent condition, providing new evidence that syllables are important sublexical units in visual word recognition and reading aloud. With respect to the neural correlates of the effect, syllables elicited an early activation of a right hemisphere network. This network is typically associated with the programming of complex motor sequences, cognitive control and timing. Subsequently, responses were obtained in left hemisphere areas related to phonological processing.