Reorientation in a small-scale environment by 3-4-, and 5-year-old children

authors

  • Gouteux S
  • Vauclair J
  • Thinus-Blanc C

document type

ART

abstract

Geometric features of surfaces and local information are constitutive elements of spatial representations. A number of studies in animals (rats) and human children (24 months old) have shown that in a rectangular environment with a reward hidden in one of the corners, geometric properties predominate over local cues for search strategies. In contrast, monkeys and human adults are able to take into account both types of information (geometric and local) to reorient. So far, all of the experiments have been conducted in the locomotor space involving a navigational task. In the present study, we examined whether similar search patterns are found using a tabletop model of a rectangular room. Three cups of children (3-, 4, and 5-year-olds) and one group of adults were tested. Results show that geometric encoding appears only at 4 years of age, that is later than in the locomotor space. The joint use of geometry and local cues emerges at 5 years of age. These data show that similar types of processing are implemented in both manipulatory and locomotor space but not at the same time. The difference between locomotor and manipulatory tasks suggests that being immersed in the environment makes this separated processing easier than being confronted by a task for which the object is exterior to the participant. (C) 2001 Elsevier Science Inc. All rights reserved.

more information