The delayed reaction paradigm, consisting to discover two different rules consecutively (delayed alternation and non-alternation task) followed by a delayed reversal task, is a specific marker for the functioning of primate prefrontal cortex. Although several works in rodents report the use of operant delayed alternation tasks, in none of the studies mice with lesion of the prefrontal cortex were used in this paradigm. In the current study, mouse experiments were conducted using a new, totally automated device, the olfactory H-maze. Here, we show that unilateral lesion of the dorsomedial prefrontal cortex in mice induced similar deficits to those observed after frontal lesions in monkeys and humans. These pronounced learning deficits seem to come from difficulty elaborating a new rule and the inability to inhibit the previous rule, characterized by perseveration after prefrontal cortex lesion. The present results demonstrate that this very simple experimental paradigm using the olfactory H-maze presents the advantage to be fast (one training session) and well suited to assess the frontal functions in mice. It should be useful for testing pharmacological or stem cell approaches in order to reduce organic damages or gain insight into the cognitive functions of the frontal cortex using transgenic or gene-targeting mice. (C) 2009 Elsevier B.V. All rights reserved.